FLake model at global scale: off-line settings and evaluation of the impacts when coupled to the global circulation model CNRM-CM5

Outline 1. General context 2. SURFEX off-line calibration 3. CNRM-CM on-line evaluation

P. Le Moigne, J. Colin, B. Decharme

General context

Improvement of lake parameterization in MF models

Due to the increase of horizontal resolution in models Need to improve the diurnal cycle over lake areas A step forward to data assimilation

SURFEX implementation of FLake model

Salgado and Le Moigne, 2010

Field Campaigns validations

THAUMEX, South-France : Le Moigne et al., 2013

CNRM-CM implementation

Improve lake representation in global climate model A component of the next IPCC exercise with CNRM-CM

SURFEX off-line calibration

off-line simulations:

- Driven by ERA-Interim atmospheric reanalyses 1979-2010
- Compared to Arc-Lake products (ESA project, ATSR1,2 radiometers) :
- Surface temperature and ice cover 1991-2010, 200 lakes with area>500km2
- Settings of lake depth, light extinction coefficient, ice albedo, skin temperature model

SURFEX off-line settings

Experiment Name	Max Lake Depth [m]	Albedo of Ice	Light Extinction Coefficient [m-1]	Skin Temperature
XPR	Unlimited	0,6	3,0	On
XPD	60	0,6	3,0	On
XPA	60	0,4	3,0	On
XPE	60	0,4	0,5	On

 $= Lake_{XPF} \text{ depth limitation to } 60m (Perroud et al., 2009; Masson et al., 2013)$

RANCE

Lake depth limitation

Surface temperature annual cycles

BIAS : XPR - XPD

RMSE : XPR - XPD

Ice albedo decrease

Surface temperature annual cycles

٠

25

30

20

Days

Reduction of spring thaw delay

Extinction coefficient decrease and skin temperature effect

$$\begin{split} & \text{SWD} = 1000 \text{ W/m}^2 \quad \text{alb} = 0.06 \\ & \text{k} = 3.0 \text{ m}^{-1} \qquad \text{QW} = 47 \text{ W/m}^2 \\ & \text{k} = 0.5 \text{ m}^{-1} \qquad \text{QW} = 570 \text{ W/m}^2 \end{split}$$

1D heat transfer

$$Q_w c_w \frac{dT}{dt} = \lambda_w \nabla T + Q$$

skin temperature equation

$$\overline{T}(0) = \overline{T}(-h) + \frac{h}{\lambda_w} \left(L^* + S^* - (QH + QE) \right) - \frac{1 - \alpha_w}{k \lambda_w} I_0 \left(1 - e^{-kh} \right)$$

CNRM-CM on-line evaluation

- Adapt model to large scale (budget closure, separation lakes/rivers)
- 2 model configurations : lakes treated by FLake or replaced by land
- 1971-2010 T127 : 1.5° at equateur

off-line vs on-line comparison

Summertime cooling effect of lakes : JJA maximum T2M

Moistening effect of lakes : seasonal RH2M

diag_flake_127-diag_noflake_127 95% MAM 90N 60N 30N 0 30S 60S 90S 180 150W 90W 60W 30W 0 30E 60E 90E 120E 150E 180 120W -20 -10 -2 10 20 -5 -1 2 5

hurs

hurs

Impact on surface fluxes QH & QE

ICE

Impact on Great Lakes JJA radiative budget

Summary

Model settings

- The limitation of depth to 60m for FLake is mandatory
- The too long ice cover duration was improved by limiting the albedo of ice to 0.4
- The setting of the light extinction coefficient to 0.5 (clear water) improved significantly surface temperature annual cycle
- Using a skin temperature module improved slightly the results

Global evaluation

- FLake was coupled to CNRM-CM model
- High cooling effect of ~3K particularly during summertime
- Associated to a moistening effect : +10 % in JJA and +5% in MAM and SON
- S More QE in JJA : +15W/m² due to a moister air
- Less QH in JJA : -15W/m² due to thermal effects (inertia)
- S Weak impact on precipitation, surface pressure
- Over Great Lakes region,
 - DJF evaporation bigger : lakes not frozen compared to ground covered by snow
 - Wind speed impact localized : bigger all the time due to roughness effects
 - Relatively high impact on radiative budget components

Acknowledgements: This study was supported by the TOSCA SWOT project from CNES and by the European COST ES1404 action

Thanks for your attention !

