

Data assimilation with EKF for FLake: problems and perspectives

Ekaterina Kour<mark>zeneva</mark>

7-9 May 2015, University of Évora, Évora, Portugal

- Introduction
- Lake model FLake from DA point of view
- Formulation of EKF
- Study of components of vector H and matrix M
- Results, problems: effect of early spring observations, decoupling
- A posteriori statistics and cross-validation
- Conclusions, perspectives

Why data assimilation for lakes is needed?

- To combine a lake model (parameterization) with lake observations
- To initialize prognostic variables of a lake model (parameterization)
- To correct model errors, which come from the uncertain initial state
- To get better knowledge about some unmeasured lake characteristics from measured ones (reanalysis)

Data assimilation for:

- Lake model: FLake, 1D aspect
- Lake observations: the lake surface temperature
- Method: Extended Kalman Filter

In-situ (SYKE) observations of LWST:

- 27 lakes in Finland
- Ice-free period
- Daily, at 8.00 EET
- In addition, MODIS observations of LWST:
- Early spring period, just after ice break-up
- 4 lakes
- Picked manually, referred to 8.00 EET

Lake model FLake from DA point of view

Diagnostic equation: the mixed layer (surface) temperature

 $\mathbf{X} = \begin{bmatrix} \overline{T} \end{bmatrix}$

stratified/mixed regime

Formulation of EKF

State vector

 $\mathbf{X} = \begin{bmatrix} \overline{T} & \eta & T_b & C_T \end{bmatrix}^{\mathrm{T}}$

Obs vector $\mathbf{Y} = \begin{bmatrix} T_{ML}^{o} \end{bmatrix}$

Obs operator $H(\mathbf{X})$

$$T_{ML} = \frac{\overline{T} - C_T \eta T_b}{1 - C_T \eta}$$

 $T_{_{ML}} = \overline{T}$

Linearised obs operator:

stratified regime

$$\mathbf{H} = \begin{bmatrix} 1 & C_T \left(\overline{T} - T_b\right) & -C_T \eta & \eta \left(\overline{T} - T_b\right) \\ 1 - C_T \eta & \left(1 - C_T \eta\right)^2 & 1 - C_T \eta & \left(1 - C_T \eta\right)^2 \end{bmatrix}$$

mixed regime

$$\mathbf{H} = 1$$

Model operator: $M(\mathbf{X})$ - FLake

Linearised model operator:

$$\mathbf{M} = \frac{\partial x_i^t}{\partial x_j^0}$$

$$\mathbf{M} = \begin{vmatrix} \frac{\partial \overline{T}^{t}}{\partial \overline{T}^{0}} & \frac{\partial \overline{T}^{t}}{\partial \eta^{0}} & \frac{\partial \overline{T}^{t}}{\partial T_{b}^{0}} & \frac{\partial \overline{T}^{t}}{\partial C_{T}^{0}} \\ \frac{\partial \eta^{t}}{\partial \overline{T}^{0}} & \frac{\partial \eta^{t}}{\partial \eta^{0}} & \frac{\partial \eta^{t}}{\partial T_{b}^{0}} & \frac{\partial \eta^{t}}{\partial C_{T}^{0}} \\ \frac{\partial T_{b}^{t}}{\partial \overline{T}^{0}} & \frac{\partial T_{b}^{t}}{\partial \eta^{0}} & \frac{\partial T_{b}^{t}}{\partial T_{b}^{0}} & \frac{\partial T_{b}^{t}}{\partial C_{T}^{0}} \\ \frac{\partial C_{T}^{t}}{\partial \overline{T}^{0}} & \frac{\partial C_{T}^{t}}{\partial \eta^{0}} & \frac{\partial C_{T}^{t}}{\partial T_{b}^{0}} & \frac{\partial C_{T}^{t}}{\partial C_{T}^{0}} \end{vmatrix}$$

stratified/mixed regime

$$\mathbf{M} = \left[\frac{\partial \overline{T}^{t}}{\partial \overline{T}^{0}}\right]$$

Components of vector H (sensitivity)

Lake Inarijärvi, 14.3 m

Matrix M, components of T (sensitivity)

Lake Inarijärvi, 14.3 m

Matrix M, components of \overline{T} (sensitivity)Lake Jääsjärvi, 4.6 mLake Tuusulanjärvi, 3.2 m

Matrix M, components of η (sensitivity)

Matrix M, components of T_{b} (sensitivity)

Lake Kallavesi, 9.7 m

Lake Rehjä-Nuusjärvi, 8.5 m

Matrix M, components of C_T (sensitivity)

Lake Kallavesi, 9.7 m

Lake Rehjä-Nuusjärvi, 8.5 m

Obs error variance: $\mathbf{R} = 1.0 \,\mathrm{K}^2$

Model error variances and co-variances:

stratified regime

Q =	$4.000K^2$	0.100 <i>K</i>	$-1.000K^2$	-0.100K
	0.100 <i>K</i>	0.010	-0.050K	0.005
	$-1.000K^2$	- 0.050 <i>K</i>	$1.000K^{2}$	0.050 <i>K</i>
	- 0.100 <i>K</i>	0.005	0.050 <i>K</i>	0.010

mixed regime

$$\mathbf{Q} = \left[4.0K^2 \right]$$

- $\mathbf{X}_{\scriptscriptstyle B}$ background vector
- \mathbf{X}_{A} analysis vector
- **B** background error covariance matrix
- A analysis error covariance matrix
- K Kalman gain vector (weights)

 $\mathbf{x}_{B} = M(\mathbf{x}_{A})$ $\mathbf{B} = \mathbf{M}\mathbf{A}\mathbf{M}^{\mathrm{T}} + \mathbf{Q}$ $\mathbf{K} = \mathbf{B}\mathbf{H}^{\mathrm{T}} (\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}$ $\mathbf{x}_{\mathrm{A}} = \mathbf{x}_{\mathrm{B}} + \mathbf{K}(\mathbf{y} - H(\mathbf{x}_{\mathrm{B}}))$ $\mathbf{A} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{B}$

Assimilation experiments

- 27 lakes with SYKE obs, among them 4 lakes with merged SYKE+MODIS obs
- 3.11.2010-10.11.2011
- FLake offline
- Forcing from operational HIRLAM forecasts
- Obs at 8.00 UTC
- Analysis at 6.00 UTC
- Assimilation window 2h
- Assimilation cycle 24 hours

Simulations of $T_{_{ML}}$

Lake Inarijärvi, 14.3 m

Simulations of \overline{T} and T_b

Lake Saimaa, 10.8 m

Decoupling problem

Lake Saimaa, 10.8 m

Bias in h ? + decoupling

Impact of obs:	$I = \frac{RMSE_{mod} - RMSE_{assim}}{RMSE_{mod}} \cdot 100\%$
----------------	--

Name (lon, lat)	D,m	I, %	Name (lon, lat)	D,m	I, %
Kuivajärvi (23.9,60.8)	2.2	94.8	Rehja-Nuasjärvi (28.0,64.2)	8.5	95.5
Tuusulanjärvi (25.1,60.4)	3.2	94.3	Vaskivesi (23.8,62.1)	7.0	97.1
Pääjärvi 1 (24.5,62.9)	3.8	96.6	Haukivesi (28.4,62.1)	9.1	94.9
Pesiöjärvi (28.7,64.9)	3.9	95.4	Kallavesi (27.7,62.8)	9.7	96.3
Kyyvesi (27.1,62.0)	4.4	96.5	Pielinen (29.6,63.3)	10.1	94.6
Jääsjärvi (26.1,61.6)	4.6	96.2	Konnevesi (26.6,62.6)	10.6	95.4
Nilakka (26.5,63.1)	4.9	96.6	Saimaa (28.1,61.3)	10.8	94.5
Pyhäjärvi (22.3,61.0)	5.5	96.4	Ala-Rieveli (26.2,61.3)	11.2	92.4
Längelmävesi (24.4,61.5)	6.8	94.4	Päijänne (25.5,61.6)	14.1	93.7
Ounasjärvi (23.6,68.4)	6.6	97.3	Inarijärvi (27.9,69.1)	14.3	97.1
Lappajärvi (23.7,63.1)	6.9	93.4	Näsijärvi (23.8,61.6)	14.7	94.0
Oulujärvi (27.0,64.5)	7.0	95.0	Pääjärvi 2 (25.1,61.1)	14.8	96.7
Unari (25.7,67.1)	7.0	94.0	Kilpisjärvi (20.8,69.0)	19.5	96.8
Kevojärvi (27.0,69.8)	7.0	98.0			

Cross-validation Every second obs was assimilated, others were used for validation

	no DA			EKF		
Lake	Bias	RMSE	ESTD	Bias	RMSE	ESTD
Inarijärvi	-2.03	5.02	4.59	0.12	0.96	0.96
Saimaa	-1.07	3.67	3.52	-0.04	1.11	1.11
Lappajärvi	0.19	2.87	2.87	0.46	1.51	1.44
Tuusulanjärvi	0.83	2.92	2.80	0.85	1.41	1.13

Conclusions, perspectives:

- EKF algorithm to assimilate LWST in FLake gives promising results
- Components of vector H and matrix M evolve smoothly, show annual cycle: potential for simplifications
- Early spring observations are important, they may affect results on the deep water temperatures in summer
- Better specification of Q matrix (need observations of water temperature profiles)
- Study other components of EKF (B matrix, K vector), more a posteriori statistics
- Model bias corrections ...
- Implementation ... into SURFEX ... HARMONIE

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Thank you for attention!

Acknowledgements to COST ES1404 for the support to participate in joint Lake2015 and WG3 ES1404 meeting