Aspects of numerical weather prediction at Lake Balaton:

Modelling of lake effects in WRF and application of a simple numerical wave parametrization

Akos Horvath, Attila Nagy Hungarian Meteorological Service, Storm Warning Observatory

4th Workshop on Parametrization of Lakes in NWP and Climate Modelling 07 May 2015, Évora

Outline

- Motivation and objectives
- Prediction of potentially dangerous phenomena at Lake Balaton
- **Case studies and sensitivity tests to lake surface temperature**
- □ Wave height parametrization and validation of results
- **Summary, conclusions**

Objective of better representation of Lake Balaton

To predict potentially dangerous phenomena by short range / nowcasting model

Objective of better representation of Lake Balaton

To predict potentially dangerous phenomena by short range / nowcasting model

Lake processes in WRF model

CLM-based lake model

since the WRF version 3.6, taken from CLM version 4.5 (Subin et al., 2012., Oleson et al., 2013.) with some modifications by Gu et al., 2015.

- One-dimensional water and energy balance model (Hostetler et al., 1993; 1994)
- Vertical layers: 10 in lake, 10 in soil, 5 in snow on ice (if present)
- Lake temperature for each layer is computed based on a Crank-Nicholson thermal diffusion solution
- Surface heat and water fluxes are calculated assuming a freely varying (infinitesimal skin) surface temperature, with aerodynamic resistances computed as for nonvegetated surfaces.
- Energy transfer between lake layers -> dt, molecular (constant), eddy diffusion

General remarks:

In short range NWP

only a few parameters might have an important role : LST, ice temperature/ snow depth

lake profil initialization is important

Evaporation shows a particular sensitivity to lake surface properties

Case studies

Lake circulation 2. (transition period, aspects of PBL)

Lake circulation (sensitivity)

Warm advection (SW wind extending over lake)

Constant LST over full integration period

07 UTC

LST calculated by lake parametrization

08 UTC

Small difference in LST, ...

Warm advection (SW wind extending over lake)

Constant LST over full integration period

07 UTC

LST calculated by lake parametrization

08 UTC

...big difference in wind field.

Warm advection, SW wind

Constant LST over full integration period

LST calculated by lake parametrization

Weak cold advection at late evening

Big difference in LST, smaller difference in wind field.

LST updated at every hours (values correspond nearly to land surface skin temperature)

Wave parametrization method

Wave parametrization method

Average height of the one-third highest waves at given place and time (Munk, 1944.)

Neglected interactions

significant wave height

Input: lake depth database

First step of work: Preparation of coastline and lake depth data on 200 m resolution grid

Input: wind fields

The third parameter, fetch lenght can be calculated

Measurements between

16 September 2013

27 November 2013

Validation of the formula based on measurements of wave heights on Great Lakes

Balaton is more shallow (~ 3 m)

Original constants	0,283	0,530	0,750
Modified constants	0,260	0,510	0,710

Correlation between calculated wave height and wind speed / fetch lenght is similar to the correlation between the observed wave height and ws / Fl

Big differences – neglected interactions (adaptation time, wave relaxation...)

□ The main objective of the short range weather modelling at Lake Balaton mainly consist of predicting dangerous phenomena over lake

Downscaling method works well at ~500 m resolution applying special dynamical, physical (and numerical) model settings

Case dependent, but generally weak sensitivity to LST in wind fields

- The applied wave model is simple in point of calculation costs such as effective in making of warnings and special forecasts
- Correlation between calculated wave height and wind speed / fetch lenght is similar to the correlation between observed wave height and wind speed / fetch lenght

Thank you for your attention!

Lake circulation – downscaling

Effects on water level due to wind along lake axis

Homogeneous wind speed and direction

(8 m/s mean wind speed)

Cold advection at meso-beta scale

Local increase of wind speed in west basin of Balaton

